Phase-field solidification model for pure materials

The solidification of a pure element can be described by a single non-conserved order parameter $\eta(r)$. This order parameter describes the liquid phase ($\eta = 0$) and solid phase ($\eta = 1$). The free energy of this system $F[\eta(r)]$ as can be given as

$$F[\eta(\boldsymbol{r})] = \int \left[\omega \eta^2 (1-\eta)^2 - \Delta f h(\eta) + \frac{\kappa}{2} (\nabla \eta)^2 \right] dV$$

Where ω is the height of the double-well barrier, κ is the gradient energy coefficient, Δf is the driving force for transformation from solid to liquid and $h(\eta)$ is the interpolation function. In this example, the 5th degree polynomial $h(\eta) = \eta^3(10 - 15\eta + 6\eta^2)$ is used as interpolation function. The driving force for solidification is given by

$$\Delta f = f^l(T) - f^s(T)$$

Where $f^{l}(T)$ is the free energy of the liquid phase and $f^{s}(T)$ is the free energy of solid phase. The free energies of the individual phases were directly obtained through PanEngine/PanDataNet. The kinetic evolution of the system is performed based on Allen-Cahn equation:

$$\frac{\partial \eta}{\partial t} = -M_{\eta} \frac{\delta F}{\delta \eta} = M_{\eta} \left[\kappa \nabla^2 \eta - 4\omega \eta \left(\eta - \frac{1}{2} \right) (\eta - 1) - \Delta f \frac{\partial h}{\partial \eta} \right]$$

Where M_{η} is the mobility of the order parameter. The model parameters κ and ω were determined by fixing the interfacial energy (γ) and interfacial width (W).

$$\gamma = \frac{\sqrt{\kappa\omega}}{3\sqrt{2}}; \quad W = 2.94 \sqrt{\frac{2\kappa}{\omega}}$$

The interfacial width (W) is defined as the region where the order parameter value η changes from 0.05 to 0.95. The mobility of the order parameter M_{η} can be determined from the physical interface mobility $\mu\left(\frac{m^4}{J.sec}\right)$ as $M_{\eta} = \mu \sqrt{\frac{\omega}{18\kappa}}$. In one-dimensional simulation, the physical interface mobility μ can realized as the ratio of interface velocity $\nu\left(\frac{m}{s}\right)$ and $\Delta f\left(\frac{J}{m^3}\right)$: $\mu = \frac{\nu}{\Lambda f}$.

For the purposes of the numerical simulation, the Allen-Cahn equation is normalized as:

Model parameter	Non-dimensional form	Notes
$l_o(m)$	-	Grid size
$G_n\left(\frac{J}{mol}\right)$	-	Energy normalization factor

Table 1:List of all the model parameters

$B_n\left(\frac{J}{mol}\right)$	-	Mobility normalization factor
$\kappa\left(\frac{J}{m}\right)$	$ \tilde{\kappa} = \frac{\kappa V_m}{G_n l_o^2} $	Gradient energy coefficient
$\omega\left(\frac{J}{m^3}\right)$	$\widetilde{\omega} = \frac{\omega V_m}{G_n}$	Barrier height
$\Delta f\left(\frac{J}{m^3}\right)$	$\widetilde{\Delta f} = \frac{\mathrm{V_m}\Delta f}{G_n}$	Driving force for transformation.
$M_{\eta}\left(\frac{m^3}{J.sec}\right)$	$\widetilde{M_{\eta}} = \frac{M_{\eta} l_o^2}{B_n V_m}$	Mobility of the order parameter